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This is the documentation for the Surrogate Optimization Toolbox (pySOT) for global deterministic optimization
problems. pySOT is hosted on GitHub: https://github.com/dme65/pySOT.

The main purpose of the toolbox is for optimization of computationally expensive black-box objective functions with
continuous and/or integer variables. All variables are assumed to have bound constraints in some form where none
of the bounds are infinity. The tighter the bounds, the more efficient are the algorithms since it reduces the search
region and increases the quality of the constructed surrogate. This toolbox may not be very efficient for problems with
computationally cheap function evaluations. Surrogate models are intended to be used when function evaluations take
from several minutes to several hours or more.

For easier understanding of the algorithms in this toolbox, it is recommended and helpful to read these papers. If you
have any questions, or you encounter any bugs, please feel free to either submit a bug report on GitHub (recommended)
or to contact me at the email address: dme65@cornell.edu. Keep an eye on the GitHub repository for updates and
changes to both the toolbox and the documentation.

The toolbox is based on the following published papers: [1], [2], [3] [4]
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CHAPTER 1

Quickstart

1.1 Dependencies

Before starting you will need Python 3.4 or newer. You need to have numpy, scipy, and pip installed and we recommend
installing Anaconda/Miniconda for your desired Python version.

There are a couple of optional components of pySOT that needs to be installed manually:

1. py-earth: Implementation of MARS. Can be installed using:

pip install six http://github.com/scikit-learn-contrib/py-earth/tarball/master

or

git clone git://github.com/scikit-learn-contrib/py-earth.git
cd py-earth
pip install six
python setup.py install

2. mpi4py: This module is necessary in order to use pySOT with MPI. Can be installed through pip:

pip install mpi4py

or through conda (Anaconda/Miniconda) where it can be channeled with your favorite MPI implementation
such as mpich:

conda install --channel mpi4py mpich mpi4py

1.2 Installation

There are currently two ways to install pySOT:

3
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1. (Recommended) The easiest way to install pySOT is through pip in which case the following command should
suffice:

pip install pySOT

2. The other option is cloning the repository and installing.

2.1. Clone the repository:

git clone https://github.com/dme65/pySOT

2.2. Navigate to the repository using:

cd pySOT

2.3. Install pySOT (you may need to use sudo for UNIX):

python setup.py install

Several examples are available in ./pySOT/examples and ./pySOT/notebooks

4 Chapter 1. Quickstart



CHAPTER 2

Surrogate optimization

Surrogate optimization algorithms generally consist of four components:

1. Strategy: Algorithm for choosing new evaluations after the experimental design has been evaluated.

2. Experimental design: Generates an initial set of points for building the initial surrogate model

3. Surrogate model: Approximates the underlying objective function. Common choices are RBFs, GPs, MARS,
etc.

4. Optimization problem: All of the available information about the optimization problem, e.g., dimensionality,
variable types, objective function, etc.

The surrogate model (or response surfaces) is used to approximate an underlying function that has been evaluated for a
set of points. During the optimization phase information from the surrogate model is used in order to guide the search
for improved solutions, which has the advantage of not needing as many function evaluations to find a good solution.

The general framework for a Surrogate Optimization algorithm is illustrated in the algorithm below:

Inputs: Optimization problem, Experimental design, Optimization strategy, Surrogate model, Stopping criterion

1 Generate an initial experimental design
2 Evaluate the points in the experimental design
3 Build a Surrogate model from the data
4 Repeat until stopping criterion met
5 Use the strategy to generate new point(s) to evaluate
6 Evaluate the point(s) generated using all computational resources
7 Update the Surrogate model

Outputs: Best solution and its corresponding function value

Typically used stopping criteria are a maximum number of allowed function evaluations (used in this toolbox), a
maximum allowed CPU time, or a maximum number of failed iterative improvement trials.

5
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CHAPTER 3

Options

3.1 Strategy

We provide implementations of Stochastic RBF (SRBF), DYCORS, Expected Improvement (EI), lower confidence
bound (LCB) and random search (RS). EI can only be used in combination with GPRegressor since uncertainty pre-
dictions are necessary. All strategies support running in serial, batch synchronous parallel, and asynchronous parallel.

New optimization strategies can be implemented by inheriting from SurrogateBaseStrategy and implementing the
abstract generate_evals method that proposes num_pts new sample points:

• Required methods

– generate_evals(num_pts): Proposes num_pts new samples.

The following strategies are currently supported:

3.1.1 SRBFStrategy

This is an implementation of the SRBF strategy by Regis and Shoemaker:

Rommel G Regis and Christine A Shoemaker.
A stochastic radial basis function method for the global optimization of expensive functions.
INFORMS Journal on Computing, 19(4): 497-509, 2007.

Rommel G Regis and Christine A Shoemaker.
Parallel stochastic global optimization using radial basis functions.
INFORMS Journal on Computing, 21(3):411-426, 2009.

The main idea is to pick the new evaluations from a set of candidate points where each candidate point is generated
as an N(0, sigma^2) distributed perturbation from the current best solution. The value of sigma is modified based

7
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on progress and follows the same logic as in many trust region methods; we increase sigma if we make a lot of
progress (the surrogate is accurate) and decrease sigma when we aren’t able to make progress (the surrogate model is
inaccurate). More details about how sigma is updated is given in the original papers.

After generating the candidate points we predict their objective function value and compute the minimum distance to
previously evaluated point. Let the candidate points be denoted by C and let the function value predictions be s(x_i)
and the distance values be d(x_i), both rescaled through a linear transformation to the interval [0,1]. This is done to
put the values on the same scale. The next point selected for evaluation is the candidate point x that minimizes the
weighted-distance merit function:

merit(𝑥) := 𝑤𝑠(𝑥) + (1 − 𝑤)(1 − 𝑑(𝑥))

where 0 ≤ 𝑤 ≤ 1. That is, we want a small function value prediction and a large minimum distance from previously
evalauted points. The weight w is commonly cycled between a few values to achieve both exploitation and exploration.
When w is close to zero we do pure exploration while w close to 1 corresponds to explotation.

• Parameters:

– max_evals: Evaluation budget (int)

– opt_prob: Optimization problem object, must implement OptimizationProblem

– exp_design: Experimental design object, must implement ExperimentalDesign

– surrogate: Surrogate object, must implement Surrogate

– asynchronous: Whether or not to use asynchrony (True / False).

– batch_size: Size of the batch. This value is ignored if asynchronous is True. Use 1 for serial or run
with asynchronous set to True.

– extra_points: n Extra points to add to the experimental design (numpy.array of size n x dim)

– extra_vals: Values for extra_points. Set elements to np.nan if unknown (numpy.array of size n x 1)

– reset_surrogate: Specify whether or not we are resetting the surrogate model i.e., removing current
points (True / False)

– weights: Weights for merit function (list or numpy.array). Default is [0.3, 0.5, 0.8, 0.95]

– num_cand: Number of candidate points (int). Default = 100*dim

3.1.2 DYCORStrategy

This is an implementation of the DYCORS strategy by Regis and Shoemaker:

Rommel G Regis and Christine A Shoemaker.
Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box
optimization.
Engineering Optimization, 45(5): 529-555, 2013.

This is an extension of the SRBF strategy that changes how the candidate points are generated. The main idea is that
many objective functions depend only on a few directions so it may be advantageous to perturb only a few directions.
In particular, we use a perturbation probability to perturb a given coordinate and decrease this probability after each
function evaluation so fewer coordinates are perturbed later in the optimization.

The parameters are the same as in the SRBF strategy.

8 Chapter 3. Options
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3.1.3 SOPStrategy

This is an implementation of the SOP strategy by Krityakierne, Akhtar and Shoemaker:

Tipaluck Krityakierne, Taimoor Akhtar and Christine A. Shoemaker.
SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single
objective problems.
Journal of Global Optimization, 66(3): 417-437, 2016.

The core idea of SOP is to maintain a ranked archive of all previously evaluated points, as per non-dominated sorting
between two objectives, i.e., i) Objective function value(minimize) and ii) Minimum distance from other evaluated
points(maximize). A sub-archive of center points is subsequently maintained via selection from the ranked evaluated
points. The number of points in the sub-archive of centers should be equal to (or greater than) the number of parallel
threads. Candidate points are generated around each ‘center point’ via the DYCORS sampling strategy, i.e., an N(0,
sigma^2) distributed perturbation of a subset of decision variables. A separate value of sigma is maintained for each
center point, where sigma is decreased if no progress is registered in the bi-objective objective value and distance
criterion trade-off. One point is selected for expensive evaluation from each set of candidate points, based on the
surrogate approximation only. Hence the merit function is s(x), where s(x) is the surrogate prediction.

Exploration and exploitation are simultaneously achieved (in parallel) via the bi-objective ranking of previously eval-
uated points, and subsequent selection of these points as centers of DYCORS perturbations. Exploitation is achieved
when the point with best objective value is the perturbation center, and the candidate around it with best surrogate
value is selected as the new evaluation point. Exploration is achieved when the point with the maximum distance
(max-min) from other evaluated points is selected as the perturbation center.

Parameters are the same as in SRBF strategy, but exclude weights, and include the following:

• ncenters: Number of center points for candidate search where one point is selected for evaluation per, each
center.

3.1.4 EIStrategy

This is an implementation of Expected Improvement (EI), arguably the most popular acquisition function in Bayesian
optimization. Under a Gaussian process (GP) prior, the expected value of the improvement:

I(𝑥) := max(𝑓best − 𝑓(𝑥), 0)

EI[𝑥] := E[𝐼(𝑥)]

can be computed analytically, where f_best is the best observed function value.EI is one-step optimal in the sense that
selecting the maximizer of EI is the optimal action if we have exactly one function value remaining and must return a
solution with a known function value.

When using parallelism, we constrain each new evaluation to be a distance dtol away from previous and pending
evaluations to avoid that the same point is being evaluated multiple times. We use a default value of dtol = 1e-3 *
norm(ub - lb), but note that this value has not been tuned carefully and may be far from optimal.

The optimization strategy terminates when the evaluatio budget has been exceeded or when the EI of the next point
falls below some threshold, where the default threshold is 1e-6 * (max(fX) - min(fX)).

• Parameters:

– max_evals: Evaluation budget (int)

– opt_prob: Optimization problem object, must implement OptimizationProblem

– exp_design: Experimental design object, must implement ExperimentalDesign

3.1. Strategy 9
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– surrogate: Surrogate object, must implement Surrogate

– asynchronous: Whether or not to use asynchrony (True / False).

– batch_size: Size of the batch. This value is ignored if asynchronous is True. Use 1 for serial or run
with asynchronous set to True.

– extra_points: n Extra points to add to the experimental design (numpy.array of size n x dim)

– extra_vals: Values for extra_points. Set elements to np.nan if unknown (numpy.array of size n x 1)

– reset_surrogate: Specify whether or not we are resetting the surrogate model i.e., removing current
points (True / False)

– ei_tol: Terminate if the largest EI falls below this threshold (float). Default: 1e-6 * (max(fX) -
min(fX))

– dtol: Minimum distance between new and pending/finished evaluations (float). Default: 1e-3 *
norm(ub - lb)

3.1.5 LCBStrategy

This is an implementation of Lower Confidence Bound (LCB), a popular acquisition function in Bayesian optimiza-
tion. The main idea is to minimize:

LCB(𝑥) := E[𝑥] − 𝜅 *
√︀

V[𝑥]

where E[𝑥] is the predicted function value, 𝑉 [𝑥] is the predicted variance, and kappa is a constant that balances
exploration and exploitation. We use a default value of kappa = 2.

When using parallelism, we constrain each new evaluation to be a distance dtol away from previous and pending
evaluations to avoid that the same point is being evaluated multiple times. We use a default value of dtol = 1e-3 *
norm(ub - lb), but note that this value has not been tuned carefully and may be far from optimal.

The optimization strategy terminates when the evaluatio budget has been exceeded or when the LCB of the next point
falls below some threshold, where the default threshold is 1e-6 * (max(fX) - min(fX)).

• Parameters:

– max_evals: Evaluation budget (int)

– opt_prob: Optimization problem object, must implement OptimizationProblem

– exp_design: Experimental design object, must implement ExperimentalDesign

– surrogate: Surrogate object, must implement Surrogate

– asynchronous: Whether or not to use asynchrony (True / False).

– batch_size: Size of the batch. This value is ignored if asynchronous is True. Use 1 for serial or run
with asynchronous set to True.

– extra_points: n Extra points to add to the experimental design (numpy.array of size n x dim)

– extra_vals: Values for extra_points. Set elements to np.nan if unknown (numpy.array of size n x 1)

– reset_surrogate: Specify whether or not we are resetting the surrogate model i.e., removing current
points (True / False)

– kappa: Constant in the LCB merit function (float). Default: 2.0

– lcb_tol: Terminate if min(fX) - min(LCB(x)) < lcb_tol (float). Default: 1e-6 * (max(fX) - min(fX))

– dtol: Minimum distance between new and pending/finished evaluations (float). Default: 1e-3 *
norm(ub - lb)
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3.2 Experimental design

The experimental design generates the initial points to be evaluated. A well-chosen experimental design is critical in
order to fit a surrogate model that captures the behavior of the underlying objective function. Any implementation
must have the following attributes and method:

• Attributes:

– dim: Dimensionality

– num_pts: Number of points in the design

• Required methods

– generate_points(lb, ub, int_var): Returns an experimental design of size num_pts x dim where
num_pts is the number of points in the initial design, which was specified when the object was created.
You can supply lb, ub, and int_var to have the design mapped before it’s scored instead of having the
rounding take place in the strategy.

The following experimental designs are supported:

3.2.1 LatinHypercube

A Latin hypercube design

• Parameters:

– dim: Number of dimensions (int).

– num_pts: Number of desired sampling points (int).

– iterations: Number of designs to generate and choose the best from (int)

Example:

from pySOT.experimental_design import LatinHypercube
lhd = LatinHypercube(dim=3, num_pts=10)

creates a Latin hypercube design with 10 points in 3 dimensions

3.2.2 SymmetricLatinHypercube

A symmetric Latin hypercube design

• Parameters:

– dim: Number of dimensions (int).

– num_pts: Number of desired sampling points (int). Use 2*dim + 1 to make sure the design has full
rank.

– iterations: Number of designs to generate and choose the best from (int)

Example:

from pySOT.experimental_design import SymmetricLatinHypercube
slhd = SymmetricLatinHypercube(dim=3, num_pts=10)

creates a symmetric Latin hypercube design with 10 points in 3 dimensions

3.2. Experimental design 11
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3.2.3 TwoFactorial

The corners of the unit hypercube

• Parameters:

– dim: Number of dimensions (int).

Example:

from pySOT.experimental_design import TwoFactorial
two_factorial = TwoFactorial(dim=3)

creates a two factorial design with 8 points in 3 dimensions

3.3 Surrogate model

The surrogate model approximates the underlying objective function given all of the points that have been evaluated.
Any implementation of a surrogate model must have the following attributes and methods

• Attributes:

– dim: Number of dimensions

– lb: Lower variable bounds

– ub: Upper variable bounds

– output_transformation: Transformation to apply to function values before fitting (for example median
capping)

– num_pts: Number of points in the surrogate model

– X: Data points, of size num_pts x dim, currently incorporated in the model

– _X: Data points scaled to the unit hypercube. We use these internally to for conditioning reasons

– fX: Function values at the data points

– updated: True if all information is incorporated in the model, else a new fit will be triggered

• Required methods

– reset(): Resets the surrogate model

– add_points(x, fx): Adds point(s) x with value(s) fx to the surrogate model. This SHOULD NOT
trigger a new fit of the model.

– predict(x): Evaluates the surrogate model at points x

– predict_deriv(x): Evaluates the derivative of surrogate model at points x

• Optional methods

– predict_std(x): Evaluates the uncertainty of the surrogate model at points x

The following surrogate models are supported:
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3.3.1 RBFInterpolant

A radial basis function (RBF) takes the form:

𝑠(𝑥) =
∑︁
𝑗

𝑐𝑗𝜑(‖𝑥− 𝑥𝑗‖) +
∑︁
𝑗

𝜆𝑗𝑝𝑗(𝑥)

where the functions 𝑝𝑗(𝑥) are low-degree polynomials. The fitting equations are[︂
𝜂𝐼 𝑃𝑇

𝑃 Φ + 𝜂𝐼

]︂ [︂
𝜆
𝑐

]︂
=

[︂
0
𝑓

]︂
where 𝑃𝑖𝑗 = 𝑝𝑗(𝑥𝑖) and Φ𝑖𝑗 = 𝜑(‖𝑥𝑖−𝑥𝑗‖) The regularization parameter 𝜂 allows us to avoid problems with potential
poor conditioning of the system. Consider using the SurrogateUnitBox wrapper or manually scaling the domain to the
unit hypercube to avoid issues with the domain scaling.

We add k new points to the RBFInterpolant in 𝑂(𝑘𝑛2) flops by updating the LU factorization of the old RBF system.
This is better than computing the RBF coefficients from scratch, which costs 𝑂(𝑛3) flops.

• Parameters:

– dim: Number of dimensions (int)

– lb: Lower variable bounds (numpy.array)

– ub: Upper variable bounds (numpy.array)

– output_transformation: Transformation to apply to function values before fitting (callable)

– kernel: RBF kernel object, must implement Kernel. Default: CubicKernel()

– tail: RBF polynomial tail object, must implement Tail. Default: LinearTail(dim)

– eta: Regularization parameter. Use something small like 1e-6 if the domain is [0, 1]^dim

Example:

from pySOT.surrogate import RBFInterpolant, CubicKernel, LinearTail
lb, ub = np.zeros(5), np.ones(5) # Domain is [0, 1]^5
rbf = RBFInterpolant(dim=5, lb=lb, ub=ub, kernel=CubicKernel(),
→˓tail=LinearTail(dim=dim))

creates a cubic RBF with a linear tail in dim dimensions.

Example:

from pySOT.surrogate import RBFInterpolant, CubicKernel, LinearTail, median_capping
lb, ub = np.zeros(5), np.ones(5) # Domain is [0, 1]^5
rbf = RBFInterpolant(

dim=5, lb=lb, ub=ub, output_transformation=median_capping, kernel=CubicKernel(),
→˓tail=LinearTail(dim=5))

will apply median capping (replace values above median by the median) to the function values before fitting. This is
useful for minimization problems where we do not want large values to influence the fit of the model.

3.3.2 GPRegressor

Generate a Gaussian process regression object. This is just a wrapper around the GPRegressor in scikit-learn.

• Parameters:

– dim: Number of dimensions (int)

3.3. Surrogate model 13
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– lb: Lower variable bounds (numpy.array)

– ub: Upper variable bounds (numpy.array)

– output_transformation: Transformation to apply to function values before fitting (callable)

– gp: GPRegressor model in scikit-learn. Uses the SE/RBF/Gaussian kernel as a default if None is
passed.

– n_restarts_optimizer: Number of restarts in hyperparamater fitting (int)

Example:

from pySOT.surrogate import GPRegressor
lb, ub = np.zeros(5), np.ones(5) # Domain is [0, 1]^5
gp = GPRegressor(dim=5, lb=lb, ub=ub)

creates a GPRegressor object in dim dimensions.

3.3.3 MARSInterpolant

Generate a Multivariate Adaptive Regression Splines (MARS) model.

𝑓(𝑥) =

𝑘∑︁
𝑖=1

𝑐𝑖𝐵𝑖(𝑥).

The model is a weighted sum of basis functions 𝐵𝑖(𝑥). Each basis function 𝐵𝑖(𝑥) takes one of the following three
forms:

1. A constant 1.

2. A hinge function of the form max(0, 𝑥− 𝑐𝑜𝑛𝑠𝑡) or max(0, 𝑐𝑜𝑛𝑠𝑡− 𝑥). MARS automatically selects variables
and values of those variables for knots of the hinge functions.

3. A product of two or more hinge functions. These basis functions c an model interaction between two or more
variables.

• Parameters:

– dim: Number of dimensions (int)

– lb: Lower variable bounds (numpy.array)

– ub: Upper variable bounds (numpy.array)

– output_transformation: Transformation to apply to function values before fitting (callable)

Note: This implementation depends on the py-earth module (see Dependencies)

Example:

from pySOT.surrogate import MARSInterpolant
lb, ub = np.zeros(5), np.ones(5) # Domain is [0, 1]^5
mars = MARSInterpolant(dim=5, lb=lb, ub=ub)

creates a MARS interpolant in dim dimensions.
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3.3.4 PolyRegressor

Multivariate polynomial regression with cross-terms. This is just a wrapper around PolynomialFeatures in scikit-learn.

• Parameters:

– dim: Number of dimensions (int)

– lb: Lower variable bounds (numpy.array)

– ub: Upper variable bounds (numpy.array)

– output_transformation: Transformation to apply to function values before fitting (callable)

– degree: Polynomial degree (int)

Example:

from pySOT.surrogate import PolyRegressor
lb, ub = np.zeros(5), np.ones(5) # Domain is [0, 1]^5
poly = PolyRegressor(dim=5, lb=lb, ub=ub, degree=2)

creates a polynomial regressor of degree 2.

3.4 Optimization problem

The optimization problem is its own object and must have certain attributes and methods in order to work with the
framework. The following attributes and methods must always be specified in the optimization problem class:

• Attributes

– lb: Lower bounds for the variables.

– ub: Upper bounds for the variables.

– dim: Number of dimensions

– int_var: Specifies the integer variables. If no variables have discrete, set to []

– cont_var: Specifies the continuous variables. If no variables are continuous, set to []

• Required methods

– eval: Takes one input in the form of an numpy.ndarray with shape (1, dim), which corresponds to one
point in dim dimensions. Returns the value (a scalar) of the objective function at this point.

3.4. Optimization problem 15
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CHAPTER 4

POAP

pySOT uses POAP, which an event-driven framework for building and combining asynchronous optimization strate-
gies. There are two main components in POAP, namely controllers and strategies. The controller is capable of asking
workers to run function evaluations and the strategy decides where to evaluate next. POAP works with external black-
box objective functions and handles potential crashes in the objective function evaluation. There is also a logfile from
which all function evaluations can be accessed after the run finished. In its simplest form, an optimization code with
POAP that evaluates a function predetermined set of points using NUM_WORKERS threads may look the following
way:

from poap.strategy import FixedSampleStrategy
from poap.strategy import CheckWorkStrategy
from poap.controller import ThreadController
from poap.controller import BasicWorkerThread

# samples = list of sample points ...

controller = ThreadController()
sampler = FixedSampleStrategy(samples)
controller.strategy = CheckWorkerStrategy(controller, sampler)

for i in range(NUM_WORKERS):
t = BasicWorkerThread(controller, objective)
controller.launch_worker(t)

result = controller.run()
print 'Best result: {0} at {1}'.format(result.value, result.params)

4.1 Controller

The controller is responsible for accepting or rejecting proposals by the strategy object, controlling and monitoring
the workers, and informing the strategy object of relevant events. Examples of relevant events are the processing of a
proposal, or status updates on a function evaluation. Interactions between controller and the strategies are organized
around proposals and evaluation records. At the beginning of the optimization and on any later change to the system

17
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state, the controller requests a proposal from the strategy. The proposal consists of an action (evaluate a function, kill
a function, or terminate the optimization), a list of parameters, and a list of callback functions to be executed once the
proposal is processed. The controller then either accepts the proposal (and sends a command to the worker), or rejects
the proposal.

When the controller accepts a proposal to start a function evaluation, it creates an evaluation record to share information
about the status of the evaluation with the strategy. The evaluation record includes the evaluation point, the status of
the evaluation, the value (if completed), and a list of callback functions to be executed on any update. Once a proposal
has been accepted or rejected, the controller processes any pending system events (e.g. completed or canceled function
evaluations), notifies the strategy about updates, and requests the next proposed action.

POAP comes with a serial controller which is the controller of choice when objective function evaluations are carried
out in serial. There is also a threaded controller that dispatches work to a queue of workers where each worker is able
to handle evaluation and kill requests. The requests are asynchronous in the sense that the workers are not required
to complete the evaluation or termination requests. The worker is forced to respond to evaluation requests, but may
ignore kill requests. When receiving an evaluation request, the worker should either attempt the evaluation or mark
the record as killed. The worker sends status updates back to the controller by updating the relevant record. There is
also a third controller that uses simulated time, which is very useful for testing asynchronous optimization strategies.

4.2 Strategy

The strategy is the heart of the optimization algorithm, since it is responsible for choosing new evaluations, killing
evaluations, and terminating the optimization run when a stopping criteria is reached. POAP provides some basic
default strategies based on non-adaptive sampling and serial optimization routines and also some strategies that adapt
or combine other strategies.

Different strategies can be composed by combining their control actions, which can be used to let a strategy cycle
through a list of optimization strategies and select the most promising of their proposals. Strategies can also subscribe
to be informed of all new function evaluations so they incorporate any new function information, even though the
evaluation was proposed by another strategy. This makes it possible to start several independent strategies while still
allowing each strategy to look at the function information that comes from function evaluations proposed by other
strategies. As an example we can have a local optimizer strategy running a gradient based method where the starting
point can be selected based on the best point found by any other strategy. The flexibility of the POAP framework
makes combined strategies like these very straightforward.

4.3 Workers

The multi-threaded controller employs a set of workers that are capable of managing concurrent function evaluations.
Each worker does not provide parallelism on its own, but the worker itself is allowed to exploit parallelism by separate
external processes.

There are workers that are capable of calling Python objective function when asked to do an evaluation, which only
results in parallelism if the objective function implementation itself allows parallelism. There are workers that use
subprocesses in order to carry out external objective function evaluations that are not necessarily in Python. The user
is responsible for specifying how to evaluate the objective function and how to parse partial information if available.

POAP is also capable of having workers connect to a specified TCP/IP port in order to communicate with the con-
troller. This functionality is useful in a cluster setting, for example, where the workers should run on compute nodes
distinct from the node where the controller is running. It is also very useful in a setting where the workers run on
a supercomputer that has a restriction on the number of hours per job submission. Having the controller run on a
separate machine will allow the controller to keep running and the workers to reconnect and continue carrying out
evaluations.
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4.4 Communication between POAP and pySOT

4.4. Communication between POAP and pySOT 19
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CHAPTER 5

Logging

pySOT logs all important events that occur during the optimization process. The user can specify what level of logging
he wants to do. The five levels are:

• critical

• error

• warning

• info

• debug

Function evaluations are recorded on the info level, so this is the recommended level for pySOT. There is currently
nothing that is being logged on the debug level, but better logging for debugging will likely be added in the future.
Crashed evaluations are recorded on the warning level.

More information about logging in Python 2.7 is available at: https://docs.python.org/2/library/logging.html.
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CHAPTER 6

Source code

6.1 pySOT.auxiliary_problems module

6.2 pySOT.controller module

6.3 pySOT.experimental_design module

6.4 pySOT.optimization_problems module

6.5 pySOT.strategy module

6.6 pySOT.surrogate module

6.7 pySOT.utils module
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CHAPTER 7

Changes

7.1 v.0.3.3, 2020-06-22

• Exclude examples and tests from the package

7.2 v.0.3.2, 2020-06-18

• Fix import error

7.3 v.0.3.1, 2020-06-17

• Automatically scale domain to the unit hypercube for the surrogates

• Add output transformations (like median capping) to the surrogates

7.4 v.0.3.0, 2020-06-16

• Refactoring the code and fixing the docs

• Adding pre-commit hooks

7.5 v.0.2.3, 2019-07-04

• Adding SOP (Contributed by drkupi)

• Re-enabling restarts: Start a fresh run when we stop making progress
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7.6 v.0.2.2, 2019-02-12

• Experimental designs can now map and round to domains

• Support for generating multiple experimental designs and picking the best

7.7 v.0.2.1, 2019-01-26

• Removing numpy.asmatrix calls, since this is now deprecated

7.8 v.0.2.0, 2018-12-06

• Most of the pySOT codebase has been rewritten

• We support asynchronous function evaluations

• The strategy has been merged with the adaptive sampling

• The penalty method strategy has been removed, but may be added back later

• A CheckpointController has been added that enables resuming terminated runs

• Python 2 support has been dropped, we now support Python 3.4 and later

• Expected improvement (EI) and lower confidence bound (LCB) have been added

7.9 v.0.1.36, 2017-07-20

• The GUI is now built in PyQt5 instead of PySide

7.10 v.0.1.35, 2017-04-29

• Added support for termination based on elapsed time

• Added the Hartman6 test problem

7.11 v.0.1.34, 2017-03-28

• Added support for adding points with known (and unknown) function values to the experimental design

7.12 v.0.1.33, 2016-12-27

• Fixed a bug in MARS that resulted in using a lot of zero points for fitting

• Added a GP regression object based on scikit-learn 0.18.1

• Updated tests and documentation
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7.13 v.0.1.32, 2016-12-07

• Switched to make py-earth, matlab_wrapper, and subprocess32 optional dependencies to resolve pip installation
issues

7.14 v.0.1.31, 2016-11-23

• Added Python 3 support

• Removed Sphinx dependency

• Added six dependency to get py-earth to work for Python 3

7.15 v.0.1.30, 2016-11-18

• Moved all of the official pySOT documentation over to Sphinx

• Five pySOT tutorials were added to the documentation

• The documentation is now hosted on Read the Docs (https://pysot.readthedocs.io)

• Removed pyKriging in order to remove the matplotlib and inspyred dependencies. A new Kriging module will
be added in the next version.

• Added the MARS installation to the setup.py since it can now be installed via scikit-learn

• Updated the Sphinx documentation to include all of the source files

• The License, Changes, Contributors, and README files are not in .rst

• Renamed sampling_methods.py to adaptive_sampling.py

• Moved the kernels and tails to separate Python files

• Added a Gitter for pySOT

7.16 v0.1.29, 2016-10-20

• Correcting an error in the pypi upload

7.17 v0.1.28, 2016-10-20

• Making the GUI work with the new RBF design

7.18 v0.1.27, 2016-10-18

• Removed dimensionality argument for the RBF to match the other surrogates
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7.19 v0.1.26, 2016-10-14

• Signficant changes in the RBFInterpolant. Users need to update their code

• Added RBF regression surfaces

• Added version information in the module. pySOT.__version__ gives the version of the current pySOT installa-
tion

• The Gutmann strategy has been temporarily removed due to the RBF redesign, but will be added back soon

• Check out test_rbf.py to see how to use the new RBF

7.20 v0.1.25, 2016-09-14

• Fixed a bug in DYCORS when the subset has length 1

7.21 v0.1.24, 2016-08-04

• Changed to setup.py to use rst format for pypi

7.22 v0.1.23, 2016-07-28

• Updates to support the new MPIController in POAP

• pySOT now sends copies of key variables in case they are changed by the method

7.23 v0.1.22, 2016-06-27

• Added two tests for the MPI controller in POAP

• Removed the accidental matplotlib dependency

• Fixed some printouts in the tests

7.24 v0.1.21, 2016-06-23

• Added an option for supplying weights to the candidate point methods

• Cleaned up some of the tests by appending attributes to the workers

• Extended the MATLAB example to parallel

• Added a help function for doing a progress plot

28 Chapter 7. Changes



pySOT Documentation

7.25 v0.1.20, 2016-06-18

• Added some basic input checking (evaluations, dimensionality, etc)

• Added an example with a MATLAB engine in case the optimization problems is in MATLAB

• Fixed a bug in the polynomial regression

• Moved the merit function out of sampling_methods.py

7.26 v0.1.19, 2016-01-30

• Too much regularization was added to the RBF surface when the volume of the domain was large. This has been
fixed.

7.27 v0.1.18, 2016-01-24

• Significant restructuring of the code base

• make_points now takes an argument that specifies the number of new points to be generated

• Added Box-Behnken and 2-factorial to the experimental designs

• Simplified the penalty method strategy by moving evals and derivs into a surrogate wrapper

7.28 v0.1.17, 2016-01-13

• Added the possibility to input the penalty for the penalty method in the GUI

• Added the possibility of making a performance plot using matplotlib that adds new points dynamically as eval-
uations are finished

• Switched from subprocess to subprocess32

7.29 v0.1.16, 2016-01-06

• Added a projection strategy

7.30 v0.1.15, 2015-09-23

• Added an example test_subprocess_files that shows how to use pySOT in case the objective function needs to
read the input from a textfile

7.31 v0.1.14, 2015-09-22

• Updated the Tutorial to reflect the changes for the last few months

• Simplified the object creation from strings in the GUI by importing directly from the namespace.
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7.32 v0.1.13, 2015-09-03

• Allowed to still import the rest of pySOT when PySide is not found. In this case, the GUI will be unavailable.

7.33 v0.1.12, 2015-07-23

• The capping can now take in a general transformation that is used to transform the function values. Default is
median capping.

• The Genetic Algorithm now defaults to initialize the population using a symmetric latin hypercube design

• DYCORS uses the remaining evaluation budget to change the probabilities after a restart instead of using the
total budget

7.34 v0.1.11, 2015-07-22

• Fixed a bug in the capped response surface

• pySOT now internally works on the unit hypercube

• The distance can be passed to the RBF after being computed when generating candidate points so it’s not
computed twice anymore

• Fixed some bugs in the candidate functions

• GA and Multi-Search gradient perturb the best solution in the case when the best solution is a previously evalu-
ated point

• Added an additional test for the multi-search strategy

7.35 v0.1.10, 2015-07-14

• README.md not uploaded to pypi which caused pip install to fail

7.36 v0.1.9, 2015-07-13

• Fixed a bug in the merit function and several bugs in the DYCORS strategy

• Added a DDS candidate based strategy for searching on the surrogate

7.37 v0.1.8, 2015-07-01

• Multi Start Gradient method that uses the L-BFGS-B algorithm to search on the surroagate
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7.38 v0.1.7, 2015-06-30

• Fixed some parameters (and bugs) to improve the DYCORS results. Using DYCORS together with the genetic
algorithm is recommended.

• Added polynomial regression (not yet in the GUI)

• Changed so that candidate points are generated using truncated normal distribution to avoid projections onto the
boundary

• Removed some accidental scikit dependencies in the ensemble surrogate

7.39 v0.1.6, 2015-06-28

• GUI inactivates all buttons but the stop button while running

• Bug fixes

7.40 v0.1.5, 2015-06-28

• GUI now has support for multiple search strategies and ensemble surrogates

• Reallocation bug in the ensemble surrogates fixed

• Genetic algorithm added to search on the surrogate

7.41 v0.1.4, 2015-06-26

• GUI now has improved error handling

• Strategies informs the user if they get constraints when not expecting constraints (and the other way) before the
run starts

7.42 v0.1.3, 2015-06-26

• Experimental (but not documented) GUI added. You need PySide to use it.

• Changes in testproblems.py to allow external objective functions that implement ProcessWorkerThread

• Added GUI test examples in documentation (Ackley.py, Keane.py, SphereExt.py)

7.43 v0.1.2, 2015-06-24

• Changed to using the logging module for all the logging in order to conform to the changes in POAP 0.1.9

• The quiet and stream arguments in the strategies were removed and the tests updated accordingly

• Turned sleeping of in the subprocess test, to avoid platform dependency issues
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7.44 v0.1.1, 2015-06-21

• surrogate_optimizer removed, so the user now has to create his own controller

• constraint_method.py is gone, and the constraint handling is handled in specific strategies instead

• There are now two strategies, SyncStrategyNoConstraints and SyncStrategyPenalty

• The search strategies now take a method for providing surrogate predictions rather than keeping a copy of the
response surface

• It is now possible for the user to provide additional points to be added to the initial design, in case a ‘good
starting point’ is known.

• Ensemble surrogates have been added to the toolbox

• The strategies takes an additional option ‘quiet’ so that all of the printing can be avoided if the user wants

• There is also an option ‘stream’ in case the printing should be redirected somewhere else, for example to a text
file. Default is printing to stdout.

• Several examples added to pySOT.test

7.45 v0.1.0, 2015-06-03

• Initial release
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CHAPTER 8

License

Copyright (c) 2015 by David Bindel, David Eriksson, and contributors. See Contributors for more details.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.
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CHAPTER 9

Contributors

Developed and maintained by:

• David Bindel <bindel@cs.cornell.edu>

• David Eriksson <dme65@cornell.edu>

• Christine Shoemaker <cas12@cornell.edu>

with contributions by:

• Yi Shen <ys623@cornell.edu>

• Taimoor Akhtar <erita@nus.edu.sg>
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